JSUTIL THTOBPI
 ACBSTE Coaching for 9(athematics and Science

SUMMATIVE ASSESSMENT - II, 2015, MATHEMATICS, CLASS - IX

SOLVED SAMPLE QUESTION PAPER

Time allowed: 3 hours

Maximum Marks: 90

General Instructions:

(i) All questions are compulsory.

(ii) The question paper consists of 34 questions divided into 4 sections. A, B, C and D. Section - A comprises of 8 questions of 1 mark each. Section - B comprises of 6 questions of 2 marks each. Section - C comprises of 10 questions of 3 marks each and Section-D comprises of 10 questions of 4 marks each.
(iii) Question numbers 1 to 8 in section-A are multiple choice questions where you are to select one correct option out of the given four.
(iv) There is no overall choice. Kowever, internal choice has been provided in 1 question of two marks. 3 questions of three marks each and 2 questions of four marks each. You have to attempt only of the alternatives in all such questions.
(v) Use of calculator is not permited.

Section - A

Q. 1 The value of x in the given figure is

(a) 22^{0}
(b) 33^{0}
(c) 44^{0}
(d) 68°

JsMTIL TUTOB:I
 ACBSE Coaching for OnGathematics and Science

Q. 2 Three angle of a quadrilateral is $60^{\circ}, 110^{\circ}$ and 86°. The fourth angle of quadrilateral is
(a) 104^{0}
(b) 124^{0}
(c) 94^{0}
(d) 84^{0}
Q. 3 Class mark of class interval 90-110 is
(a) 90
(b) 110
(c) 100
(d) None
Q. 4 A die is thrown once. The probability of getting an even no. is
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{5}$
Q. 5 Which one is solution of $\mathrm{eq}^{\mathrm{n}} x-3 y=2$
(a) $(4,1)$
(b) $(6,2)$
(c) $(5,1)$
(d) $(0,2)$
Q. 6 If the lateral surface area of cube is $1600 \mathrm{cmi}^{2}$ then its edge is
(a) 15 cm
(b) 18 cm
(C) 25 cm
(d) 20 cm
Q. 7 If the slant height of a cone is 10 cm and its radius $/ \mathrm{cm}$, then height of cone is
(a) 9 cm
(b) 13 cm
(c) 16 cm
(d) 8 cm
Q. 8 If $(2,-3)$ is solution of $\mathrm{eq}^{\mathrm{n}} 3 x--k y=2$ then the value of K is
(a) -2
(b) $-\frac{2}{3}$
(c) -4
(d) $-\frac{4}{3}$

Section-B

Q. 9 If the total surface area of a hemisphere is $27 \pi \mathrm{~cm}^{2}$, then its diameter is equal to \qquad
Q. 10 In the given parallelogram the value of x will be

Q. 11 In the given figure, if $\angle P O R$ is 120°, then the value of $\angle P Q R$ is \qquad

USUCIL THTOTH: ACBSE Coaching for OCathematics and Science

Q. 12 The arithmetic mean of first five odd natural no. is \qquad
Q. 13 The probability of an event lies between \qquad .
Q. 14 Write the relation between mean, median and mode

Section-C

Q. 15 Draw the graph of $2 x+y=6$ and find the point on x-axis where graph of this eq ${ }^{n}$ cut the x-axis.
Q. 16 Find three solution of the linear equation $2 x+3 y=5$, and check whether (-3 ,
4) is a solution of the given equation.
Q. 17 In a parallelogram, show that the angle bisectors of two adjacent angles intersect at right angle.

OR
In the given figure, E is the mid-point of side $A D$ of a trapezium $A B C D$ with $A B \| C D$. A line through 든 parallel to $A B$ meets $B C$ in F show that F is the midpoint of BC .

2.18 Triangle $A B C$ and $D B C$ are on the same base $B C$ with vertices A and D on opposite sides of $B C$ such that area of $\triangle A B C=$ area of $\triangle D B C$. Show that $B C$ bisect AD.

Jsulil rurorirl ACBSE Coaching for OKathematics and Science

Q. 19 ABCD is a cyclic quadrilateral BA and CD produced meet at E. Prove that triangle EBC and EDA are equiangular.

OR
In given figure, C and D are points on the

Semi circle described on BA as diameter given $\angle B A D=70^{\circ}, \angle D B C=30^{\circ}$ Calculate $\angle A B D$ and $\angle B D C$.
Q. 20 Construct a triangle ABC in which $\mathrm{BC}=4.5 \mathrm{~cm} \angle B=45^{\circ}$ and $A B-A C=2.5 \mathrm{~cm}$
Q. 21 A conical tent is 10 m high and the radius of its base is 24 m . Calculate its slant height and cost of canvas required to make it at the rate Rs. 70 per m^{2}.
Q. 22 A sphere, a cylinder and a cone are the same radius and same height. Find the ratio of their curved suriaces.

PR

Volume of a cube is $5832 \mathrm{~m}^{3}$. Find the cost of painting its total surface area at the rate of Rs. 3.50 per m ${ }^{2}$.
Q.23 A car is going or a long jourriey of 16 hours starting at 5.00 hours. The speed of the car different hours is given below.

hours) (in	Speed (in km/hr.)
5.00	40
7.00	50
9.00	60

11.00	80
13.00	70
15.00	65
17.00	75
19.00	50
21.00	

Draw a velocity time graph for the above data.
Q. 24 A coin is tossed 15 times and observed that 11 times head comes up. Find the probability that a tail comes up.

Section-D

Q. 25 The taxi fare in a city is as follow. For the first kilometer, the fare is Rs. 8 for the subsequent distance it is Rs. 5 perkm. Taking the distance covered as x km . and total fare as Rs. y, write a linear equations for this information and draw its graph.
Q. 26 If the points $\mathrm{A}(3,5)$ and $\mathrm{B}(1,4)$ fies on the line $a x+b y=7$ find the values of a and b .

$$
O R
$$

Draw the graph of the equation $-y=1$ and $2 x+y=8$. Shade the area bounded by these two lines and y-axis. Also determine this area.
Q. $27 A B C D$ is a parallelogram. $A B$ produced to E so that $B E=A B$. Prove that $E D$ bisects BC ?
Q. 28 In given figure, $A B C D$ is a parallelogram and EFCD is a rectangle. Also $A L \downarrow D C$ Prove unat
(i) $\operatorname{ar}(A B C D)=\operatorname{ar}(E F C D)$
(ii) $\operatorname{ar}(A B C D)=D C X A L$

Q. 29 Prove that the area of an equilateral triangle is equal to $\frac{\sqrt{3}}{4} a^{2}$ where a is the side of the triangle.
Q. 30 In given figure, calculate the angle $\angle A O C$

Q. 31 Construct a $\triangle A B C$ in which $\mathrm{BC}=5.6 \mathrm{~cm}, \mathrm{AC}-\mathrm{AB}=-1.6 \mathrm{~cm}$ and $\angle B=45^{\circ}$
Q. 32 The mean of the following distribution is 50.

x	frequency
10	17
30	$5 a+3$
50	32
70	19
90	

Find the value of a and frequency of 30 and 70 .
Q. 33 How many planks each of which is 2 m long, 2.5 cm broad and 4 cm thick can be cut off from a wooden block 6 m long, 15 cm broad and 40 cm thick?
Q. 34 An ron pipe 20 cm long has exterior diameter equal to 25 cm . If the thickness of the pipe is $1 / \mathrm{cm}$. Find the whole surface area of the pipe excluding ends of the pipe.

OR

The diameter of a sphere is decreased by 25% by what percent its curved surface area decreases.

Sample Paper SA -II

Marking Scheme

Section-A

Q. 1 (a)
Q. 2 (a)
Q. 2 (a)
Q. 3 (c)
Q. 4 (a)
Q. 5 (c)
Q. 6 (d)
Q. 7 (d)
Q. 8 (d)

Section - B

Q. 96 cm
Q. 10 36cm
Q. $11 \quad 120^{\circ}$
Q. 125
Q. 130 and 1, both no. are including.
Q. 14 mode $=3$ median - 2 mean

Section-C
Q. 15

Point on x-axis is $(3,0)$
Q. $162 x+3 y=5$ \qquad
Put $x=1,2,3,0,-1,2$ etc and get value of y.

JSTINI THTOBRI ACBSE Coaching for O(athematics and Science

then (x, y) is sol ${ }^{n}$ of this eq ${ }^{n}$

Put $x=-3$ and $\mathrm{y}=4$ in $e q^{n}(1)$ we get
$-6+12 \neq 4$
So $(-3,4)$ is not a solution.
Q. 17

To prove $\angle A P B=90^{\circ}$
$\angle A+\angle B=180^{\circ}$
$\frac{1}{2} \angle A+\frac{1}{2} \angle B=90^{\circ}$
But $\frac{1}{2} \angle A+\frac{1}{2} \angle B+\angle A P B=1,20^{\circ}$
$90^{\circ}+\angle A P B=180^{\circ}$
$\Rightarrow \angle A P B=90^{\circ}$

Construction : Join AC to intersect EF at G.
Proof
EF||DF
EG IDE
since E is mid point of $A D$.
$\therefore G$ is mid point of $A C$ (By converse of mid point theorem)

In $\triangle A B C$ F'G||AB.
G is mid point of $A C$
\therefore is mid point of BC.
Q. 18.

Construction : Join AD. Which intersect BC at E draw $D N \perp B C \quad A M \perp B C$

Proof :
$\mathrm{AM}=\mathrm{DN}$ (Δ on same base and equal in area so altitude is same)
Now in $\triangle A E M$ and $D E N$

$$
\angle 1=\angle 2
$$

$\angle A M E=\angle D N E=90^{\circ}$
$\mathrm{AM}=\mathrm{DN}$
$\Delta \mathrm{AEM} \cong \triangle \mathrm{DEN}$
So $A E=D E$
$\Rightarrow \quad B C$ bisect $A D$

 ACBSE Coaching for OCathematics and Science

Q. 19.

Given $A B C D$ is a cyclic quadrilateral $B A$ and $C D$ produced meet at E.
To prove $\triangle \mathrm{EBC}$ and $\triangle \mathrm{EDA}$ are equiangular.
Proof : $\quad A B C D$ is a cyclic quad.

$$
\therefore \angle B A D+\angle B C D=180^{\circ}
$$

But $\angle B A D+\angle E A D=1 / 30^{\circ}$ (linear pair)
$\Rightarrow \quad \angle B C D=\angle E A D$

Similarly $\angle A B C=\angle E D A$

$$
\text { and } \angle B E C=\angle A E D
$$

Hence $\Delta s \mathrm{EBC}$ and EDA are equiangular

```
                                    OR
\(\angle B C D+\angle B A D=180^{\circ}(a s / A B C D\) is a cyclic quadrilateral)
\(\angle B C D+70^{\circ}=180^{\circ}\)
\(\angle B C D=110^{\circ}\)
Aiso \(\angle C B D+\angle B C D+\angle B D C=180^{\circ}\)
\[
\left.30^{\circ}\right)+110^{\circ}+\angle B D G=180^{\circ}
\]
\[
\angle B D C=40^{\circ} \text { Ans. }
\]
```

Sirice $\angle A D B$ is angle in semi-circle

$$
\angle A D B=90^{\circ}
$$

In $\triangle A B D$

$$
\begin{gathered}
\angle A B D+\angle A D B+B A D=180^{\circ} \\
\angle A B D+90^{\circ}+70^{\circ}=180^{\circ} \\
\angle A B D=20^{\circ} \mathrm{Ans}
\end{gathered}
$$

Q. 20 Steps of construction
(i) Draw a ray BX and cut off a line segment $\mathrm{BC}=4.5 \mathrm{~cm}$ from it
(ii) Construct $\angle X B Y=45^{\circ}$
(iii) Cut off a line segment $\mathrm{BD}=2.5 \mathrm{~cm}$ from BY (iv) Join CD.
(v) Draw \perp bisector of $C D$ cutting BY at a point A.
(vi) Join AC

So $\triangle A B C$ is the required triangle.
Q. $21 l^{2}=r^{2}+h^{2}$

$l=26 m$
Curved surface area $=\pi r l$

$$
\text { Cost }=70 \times \pi r l
$$

$=$ Rs. 137280
Q. 22 Let is is radius thien height of cone $=$ sphere $=$ cylinder $=2 r$

So $\quad S_{1}=$ curved surface of sphere $=4 \pi r^{2}$
$S_{2}=$ curved surface of cylinder $=4 \pi r^{2}$
$\mathrm{S}_{3}=$ curved surface cone $=\sqrt{5} \pi r^{2}$

JSIITIL TITHOTIRL ACBSE Coaching for OCathematics and Science

$$
\text { as } l=\sqrt{r^{2}+h^{2}}=\sqrt{r^{2}+4 r^{2}}=\sqrt{5} r \text { ratio :4:4:ل}
$$

OR

volume $S^{3}=5832 \mathrm{~m}^{3}$

$$
S=18 \mathrm{~m}
$$

Painted area $6 s^{2}$

$$
\begin{aligned}
& \begin{array}{l}
=1944 \mathrm{~m}^{2} \\
\text { Cost }= \\
1944 \times 3.5 \\
= \\
=\text { Rs. } 6804
\end{array}
\end{aligned}
$$

Q. 23 Check your graph with the help of your teacher/classmates
Q. 24 Ans. $\frac{4}{15}$
Q. $25 y=8+5 \times(x-1)$

$$
\Rightarrow y=5 x+3
$$

Q. $263 a+5 b-7$

$$
a+4 b=7
$$

$$
\alpha a=-1, b=2
$$

Q.26. OR,

Area $=\frac{1}{2} \times 9 \times 3=13.5$ sq units.
Q. 27

$A B \| C D$ and $B C$ transversal
So $\quad \angle 1=\angle 2$

$$
\angle 3=\angle 4
$$

$$
\mathrm{AB}=\mathrm{CD}=\mathrm{BE}
$$

So $\triangle B O E \cong \triangle C O D$
$\Rightarrow B O=C O, O$ is mid of $B C$
\Rightarrow ED bisect BC
Q. 28 Since parallelogram and rectangle are on same base DC and between same height A.L
$\operatorname{ar}(A B C D)=\operatorname{ar}(D E F E)$
So $\operatorname{ar}(\mathrm{ABCD})=C D \times F C$
$=C D \times A L(A L=F C$ as ALCF is rectangle $)$
$=\mathrm{DC} \times \mathrm{AL}$
29.

$\triangle A B D \cong \triangle A C D$

$$
\mathrm{BD}=\mathrm{DC}=\frac{a}{2}
$$

In $\triangle A D B$

$$
\begin{aligned}
& A D^{2}=a^{2}=\frac{a^{2}}{4} \\
& A D=\frac{\sqrt{3}}{4} a
\end{aligned}
$$

$$
\text { ar } \triangle A B C=\frac{1}{2} B C \times A D=\frac{\sqrt{3}}{4} a^{2}
$$

Q. 30 Join OB
the find $\angle A B O=30^{\circ}$
and $\angle C B O=40^{\circ}$
So $\angle A B C=70^{\circ}$
So $\angle A O C=140^{\circ}$
Q. 31 Steps of const.
(i) Draw $\mathrm{BC}=5.5 \mathrm{~cm}$
(ii) At B make $\angle C B X=45^{\circ}$
(iii) Produce VB to X^{1} to form line $\mathrm{XBX}{ }^{1}$
(iv) From ray $B X^{1}$ cut off line segment $B D=1.6 \mathrm{~cm}$
(v) Join CD
(vi) Draw \perp bisector of $C D$ which cut $B X$ at A.
(vii) Join AC to obtain required $\triangle B A C$
Q.3? $\Sigma f i=12 a+60, \Sigma$ fixi $=640 a+2800$

Jsunt rirolimi ACBSE Coaching for OXathematics and Science

$\bar{x}=\frac{\Sigma f i x i}{\Sigma f i}$
$50=\frac{640 a+2800}{12 a+60}$

$$
\mathrm{a}=5 \mathrm{Ans} .
$$

Q. 33 number of planks $=\frac{\text { volume of wooden block }}{\text { volume of each plank }}=\frac{600 \times 15 \times 40}{200 \times 2.5 \times 4}=180$
Q. $34 R=12.5$ (External radius)
$r=$ internal radius $=($ external radius $-1 \mathrm{~cm})=11.5 \mathrm{~cm}$
$\mathrm{h}=20 \mathrm{~cm}$
Total surface area $=$ External surface area + Internal surfáce area $=3168 \mathrm{~cm}^{2}$
OR
Given $\mathrm{S}=4 \pi r^{2}$
Decreased radius $=\frac{3 r}{4}$
then new area $=\frac{9 \pi r^{2}}{4}$
Decreased area $=\frac{7 \pi r^{2}}{4}$
$\%$ decrease $=43.75$

